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Semantic Meaning Enhances Feature-Binding but not Quantity or Precision of Location in 

Visual Working Memory 

Abstract 

Recent studies showed that real-world items are better remembered in Visual 

Working Memory (VWM) than visually similar stimuli that are stripped of their 

semantic meaning. However, the exact nature of this advantage remains unclear. 

We used meaningful and meaningless stimuli in a location-reproduction VWM 

task. Employing a Mixture-modeling analysis, we examined whether semantic 

meaning enables more item locations to be remembered, whether it improves the 

precision of the locations stored in memory, or whether it improves binding 

between the specific items and their locations. Participants were presented with 

streams of 4 (Experiments 1 & 2) or 6 (Experiment 3) real-world items, or their 

scrambled, meaningless counterparts. Each item was presented at a unique location 

and the task was to reproduce one item’s location. Overall, location memory was 

consistently better for real-world items compared to their scrambled counterparts. 

Furthermore, the results revealed that participants were less likely to make swap 

errors for the meaningful items but there was no effect of conceptual meaning on 

the guess rate or the precision of the report. In line with previous findings, these 

results indicate that conceptual meaning enhances VWM for arbitrary stimulus 

properties such as item location, and this improvement is primarily due to a more 

efficient identity-location binding rather than an increase in the quantity or quality 

(precision) of the locations held in memory.  
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Introduction 

Studies of visual memory have extensively investigated both the breadth and capacity limits of 

visual memory. Classical as well as more recent Long-Term Memory (LTM) studies found that 

observers can remember a vast number of items and their features or states, to the extent that, 

effectively, no upper bound of capacity was established (e.g., Brady et al., 2008, 2011; Konkle et 

al., 2010a, 2010b; Shepard, 1967; Standing 1973). Those studies used meaningful items such as 

real-world objects and scenes as memoranda, lending support for the important role of semantic 

meaning in visual LTM (e.g., Brady et al., 2019; Konkle et al., 2010; Koutstaal et al., 2003; 

Kramer et al., 2023; Reder et al., 2013; Shoval et al., 2023a). Indeed, when real-world objects 

were stripped of their semantic meaning through scrambling and distortion, visual memory 

capacity was shown to be dramatically reduced (Shoval et al., 2023b). 

In an attempt to avoid LTM influences, however, classical visual working memory (VWM) 

studies have typically employed 'low-level' stimuli such as colors, line orientations, and 

meaningless matrix patterns (e.g., Luck & Vogel, 1997, Phillips, 1974). In contrast to LTM 

findings, these studies have traditionally demonstrated a highly limited capacity system in VWM 

(e.g., Cowan, 2010; Luck & Vogel, 2013; Oberauer et al., 2016; Zhang & Luck, 2008). 

However, recent research has indicated that VWM performance is actually enhanced when the 

memoranda carry semantic meaning (e.g., Asp et al., 2021; Brady et al., 2016; Brady & Störmer, 

2022; Chung et al., 2023a; Conci et al., 2021; Conci et al., 2023; Sahar et al., 2020; Shoval & 

Makovski, 2022).  

For example, Sahar et al. (2020) compared VWM and the metamemory of meaningful and 

meaningless stimuli. The meaningful stimuli comprised of images of real-world objects (Brady 

et al., 2008), while the meaningless stimuli were the same images subjected to a simple image 
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manipulation, preserving most visual properties while reducing their meaning (see, Makovski, 

2018). The results revealed that participants better remembered semantically meaningful items 

than meaningless items, with higher confidence. The disadvantage of meaningless items was 

observed in following studies regardless of whether the items were “lightly” (e.g., Makovski, 

2018, or “heavily” (Stojanoski & Cusack, 2014, fig. 1b) distorted (Brady & Störmer, 2022; 

Shoval & Makovski, 2022). Another study (Brady & Störmer, 2022) showed that meaningful 

items were better remembered in both serial and simultaneous presentation than blobs of colors 

and distorted items (see also Chung et al., 2023a). Supported by past findings of a larger CDA 

(Contralateral Delayed Activity) component for real-world items than color patches (Brady et al., 

2016), the authors stipulated that memory capacity is boosted for meaningful items since they 

receive in-depth encoding and stronger active maintenance in VWM (see, Asp et al., 2021; also, 

Brady et al., 2019 in LTM).  While a follow-up study (Thibeault et al., 2023) was not able to 

pinpoint the precise locus of improvement (i.e., encoding, maintenance, or retrieval), it too, 

demonstrated an improvement in capacity estimates (Cowan’s-K) of meaningful stimuli 

compared to meaningless items. The authors suggested it is the conceptual meaning rather than 

the visual complexity of the items that drives a VWM advantage for real-world object identities.  

The semantic meaning of an (visual) item can be defined from various perspectives. Here, we 

consider the semantics of an object as typically derived from its basic-level category, namely, the 

level at which the item can be labeled. It's important to note that a label or a name encapsulates a 

set of critical features defining the item (Rosch, 1975; see, Gasparri & Marconi, 2021), yet the 

manner in which these features contribute to visual memory remains largely unclear. That is, 

how idiosyncratic non-visual information (i.e., conceptual meaning) contributes to the 

enhancement of visual information in memory is quite remarkable and not yet fully explained. 
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There are several, not mutually exclusive, explanations for the advantage of semantic meaning in 

VWM. In some studies, semantic meaning has been described as a "hook", or a "scaffold" for 

visual detail (e.g., Chung et al., 2023a; Konkle et al., 2010). More specifically, it was suggested 

that real-world objects are stored in memory at both feature and object-based levels, with the 

latter linked to conceptual knowledge. This hierarchical organization provides a valuable 

structure (or 'scaffold') for low-level visual features and a higher-dimensional representation, 

thereby enhancing VWM (e.g., Chung et al., 2023a, Wyble et al., 2016). From a 

neurophysiological perspective, meaningful items may activate brain regions that support the 

formation of more vivid visual memories, compared to meaningless stimuli (e.g., Asp et al., 

2021; Brady & Alvarez, 2015; Shoham et al., 2022). Relatedly, some argued that prior 

knowledge about an object enables the “chunking” of information, thereby reducing capacity 

limitations and enabling observers to maintain more features and information (e.g., Brady et al., 

2009; Conci et al., 2021).  

Previous existing knowledge is also tied to stimulus familiarity, with familiar items benefiting 

from better consolidation of items into VWM (Blalock, 2015; Shoval & Makovski, 2021; Xie & 

Zhang, 2017, 2018). In alignment with this perspective, other views have proposed that 

familiarity contributes to visual memory performance by freeing attentional resources to encode 

more visual information and facilitate feature-to-feature binding (Popov & Reder, 2020; Popov 

et al., 2022; Reder et al., 2013). Another way in which meaning might play a role in VWM is 

through the engagement of verbal LTM or labeling. When participants are given the option to 

use a term that describes the visual stimulus (i.e., a label), VWM performance improves both in 

terms of quantity and quality compared to a condition involving meaningless articulatory 

suppression (Souza & Skóra, 2017). Labeling has been shown to boost VWM performance by 
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allowing to maintain and protect a detailed representation in VWM (Overcott & Souza, 2022, 

2023). However, conceptual meaning does not necessitate explicit verbal encoding. It was 

suggested that meaningful visual items might activate some form of conceptual, and perhaps 

prototypical, knowledge irrespective of verbal encoding (Bae et al., 2015; Sahar et al., 2020; 

Souza et al., 2021; Markov & Utochkin, 2022). Given the intimate connection between 

perceptual and conceptual information in everyday objects, it is often highly challenging to 

separate the two and isolate 'perceptual' memory per se  (see Konkle et al., 2010, in LTM). 

Notably, the type of visual information being tested might affect one's conclusions. For instance, 

A feature might be easier to encode and consolidate into VWM if it aligns with pre-existing 

knowledge (Olsson & Poom, 2005; Bae et al., 2015), or if it is diagnostic of the object's 

nature/identity (e.g., distinguishing between a green and yellow banana, or recognizing the colors 

of a familiar flag, e.g., Conci et al., 2021). In the present study, we therefore asked whether 

conceptual knowledge can affect memory for visual details that are not associated with an item’s 

core essence. Specifically, we investigated whether meaning can enhance VWM of an arbitrary 

object feature, such as its spatial location.  

If meaning does indeed enhance location memory performance, we aimed to observe whether 

this enhancement operates in terms of memory resolution or other factors. The results of Chung 

et al. (2023a), demonstrating that memory for an arbitrary color is enhanced for meaningful 

items, already suggest that the influences of meaning might not be restricted to the item's 

identity. Yet, it is not clear whether this result can be generalized to other dimensions that are not 

directly related to the item’s intrinsic features. Critically, in the context of the current study, 

location serves as an arbitrary feature that is independent of the item's identity.   
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Furthermore, testing spatial location memory is essential because many researchers have argued 

that location constitutes a unique feature, playing a key role in attention, perception, and VWM 

(e.g., Golomb et al., 2014; Lamy & Tsal, 2001; Makovski 2016; Pertzov & Husain, 2014; 

Treisman & Gelade, 1980), specifically in the binding of different features together (Oberauer & 

Lin, 2017; Schneegans & Bays, 2017, but see Li et al., 2022). The goal of the study was thus to 

test the effects of meaning on spatial memory, by comparing performance for meaningful (i.e., 

intact, real-world) with meaningless (i.e., scrambled) objects (see Figure 1). Furthermore, using a 

mixture-modeling approach (Bays, et al., 2009), we were able to test which parameters were 

specifically affected by the item’s meaning (for a similar approach, see Markov & Utochkin, 

2022; Popov et al., 2022). There are several possible outcomes to the mixture-modeling approach 

(see graphical illustration in Figure 2, right): (1) An effect on the SD parameter (i.e., smaller SDs 

for meaningful items) would suggest better location memory precision. That is, meaning creates 

a more precise location representation. (2) An effect on the Guess-rate would suggest that 

meaning boosts the number of locations stored in VWM. (3) Fewer swap errors for meaningful 

items would suggest a stronger linkage between arbitrary spatial location and identity.  Note that 

the combination of Guess-rate and the Swap rate indexes the number of correct object locations 

stored in memory: If meaning boosts the number of locations stored in VWM, then we should 

expect a higher rate of correct target responses given the item’s identity (i.e., fewer errors due to 

guesses and swaps) for the meaningful stimuli. 
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Figure 1. Examples of stimuli from all experiments. (a) Examples of intact, meaningful items 

(b) Examples of distorted, meaningless items. 

It is also noteworthy that any combination of these outcomes is possible and that these 

possibilities do not necessarily refute the suggested theories and accounts. This is because the 

theories can be modified to accommodate any of the (parameters) outcomes. For example, if 

all items have an accessible memory signal but it is weakly bound to their specific locations, 

“increased capacity” could be expressed as fewer swap errors. The current study, therefore, 

was not designed to pit the different theoretical views against each other, but rather to ask 

which aspects of memory performance (i.e., parameters in the model) would be mostly 

affected by stimulus meaning.  
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Figure 2 Schematic illustration of a trial containing meaningless items and the 

mixture-modeling approach with the swap model (Bays et al., 2009): (Left) 

Presentation sequence: each trial consists of 4 items presented sequentially, each 

presented in a distinct location around the perimeter of a circle, see details below 

and Figure 3. (Middle) Response: In the response phase participants are asked to 

reproduce the target location (i.e., the location of the item appearing inside the 

circle) by continuously adjusting a probe (small white circle) to the target location 

on the perimeter of the outer circle. (Right) Correspondence of responses to the 

model parameters: Responses in the near vicinity of the correct target location are 

classified as Target responses (marked in gray); The Precision of response (SD) is 

estimated from the spread of responses. Responses at the location of non-target items 

(marked in orange) are classified as Swap responses. Unrelated responses (marked 

in red) are classified as guess responses.  
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To preview our results, Experiment 1 found that meaning had a large effect on VWM 

performance that translated to an effect on swap errors, while there was no effect on the guess 

rate or the precision rate (SD). Experiment 2 replicated Experiment 1's results, even though it 

included masks that impaired overall performance, negating the possibility that the lack of an 

effect on precision might have resulted from a ceiling effect. Experiment 3 further tested VWM 

for a larger memory set size, and yet the main results remained the same: meaning reduced swap 

errors but did not affect the guess rate or the precision factor. Since all experiments share the 

same general method, we report them all collectively. 

Method 

The stimuli, tasks, data, and analyses are available at the Open Science Framework: 

https://osf.io/za3bm 

Sample-size 

We adopted an open-ended Bayesian design (Schönbrodt & Wagenmakers, 2018). We set the 

minimal sample size at 20 participants. This sample size allows us to detect a large effect 

(Cohen’s d = .7, p-value = .05) with 85% statistical power. Due to the exploratory nature of 

Experiment 1, we allowed a larger sample size to make sure we could detect an effect (if any) on 

each parameter and adopted a stricter criterion to stop collecting data (i.e., BF > 100 for H0 or 

H1). In Experiments 2 and 3, given the observed effects of Experiment 1, we adopted a looser 

criterion for stopping the collection of data: when a two-sided Bayesian paired samples t-test for 

the average absolute error (i.e., Meaningful vs. Meaningless) showed a BF above 3 (for either H0 

or, H1). The mixture modeling was performed only after the data collection was completed. In 
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the results section BF10 denotes the Bayes Factor in favor of a difference (i.e., an effect present) 

while BF01 denotes the Bayes Factor in favor of a no-difference (i.e., the absence of an effect). 

The two measures are reciprocal and easily interchangeable: 𝐵𝐹10 =  
1

𝐵𝐹01
 

 

Participants 

Participants in all experiments were the Open University of Israel undergraduate students who 

took part in the experiments for course credit (age range: 18-40). All signed an informed consent, 

and had normal or corrected vision, normal color vision, and lacked any neurological or attention 

deficits. The study was approved by the ethics committee of the Education and Psychology 

department at the Open University. Experiment 1 tested 35 participants (18 females, 10 males, 7 

other/not responded, mean age = 29.4), Experiment 2 tested 24 participants (22 females, 2 males, 

mean age = 26), and Experiment 3 tested 25 participants (12 females, 13 males, mean age = 

27.3) 

Materials 

The task was implemented with PsychoPy (version 2020.1.3; Peirce et al., 2019), running on a 

Standard PC with a 23.5" LCD Eizo Foris monitor (1920 x 1080, 120Hz refresh rate). Analyses 

were performed using JASP (version 0.15, JASP team, 2021) with the Standard prior 

(Caucy~.707). Mixture-modeling analyses and model comparisons were performed using the 

Memtoolbox package (Suchow et al., 2013). All stimuli appeared against a white background 

(RGB = [0, 0, 0]). All experiments included a starting fixation display (a black cross, 50 pix).  

Stimuli appeared on an invisible circle with a radius of 380 pix (11.4̊, except in Experiment 3 in 

which it was visible and appeared in black (RGB = [255, 255, 255]). Each image size was 160 x 
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160 pix (4.8̊ x 4.8̊), except for Experiment 3 in which the image size was 100 x 100 pix (3̊ x 3̊). 

The image set (for each participant) included 600 randomly sampled intact images of everyday 

objects from a previously published set (which contains 1600 images, Brady et al., 2008). The 

distorted images were a subset of 600 scrambled versions of intact images, also sampled from the 

larger pool (of 1600 scrambled images). Thus, images in the two conditions were roughly 

matched across participants. Scrambling was performed by diffeomorphic transformations 

(Stojanoski & Cusack, 2014) that distorted the images’ meaning while keeping most of the visual 

statistics intact (Brady & Störmer, 2022; Shoval & Makovski, 2022; Shoval et al., 2023b). An 

image of a multi-colored circle was presented before the first and after the last items so each trial 

sequence started and ended with the colored-squares image. The mask image was a circle filled 

with multi-colored squares, of the same dimensions as the images. The locations of the memory 

items were achieved by presenting the stimuli in a radial orientation ranging from 1° to 360° in 

steps of 1°. Each image (160 x 160 pix) appeared in a random, unique position with the 

restriction of a minimum distance of 30° between the images. Participants responded to the 

memory-location task by using the mouse to adjust a response probe to the target’s location. The 

response probe was a white circle (radius Experiments 1 and 2: 80 pix, 2.4̊; Experiment 3: 50 

pix, 1.5̊) that appeared on a visible black circle (RGB = [255, 255, 255]), of the same dimensions 

as the objects presented during encoding. After the response, participants received written 

feedback (“your error is X degrees”, RGB = [0,0,0], Helvetica, 30pix) presented inside the 

response circle, 80 pix below the probe. In addition, the correct target location appeared on the 

circle with a red “X”, and the participant’s response appeared simultaneously with a blue “O” 

(40 pix). 

 



13 

 

Procedure 

Experiment 1  

The task of the participants was to remember the location of four images so they could adjust the 

probe to match the target’s location. Four unique images, either Intact (Meaningful) or Distorted 

(Meaningless), were randomly sampled and each image was used only once throughout the 

experiment.  Each trial began with a 700 ms fixation display- a black plus sign (50 pix) that 

remained visible throughout the trial. The first colored circle appeared at the center of the screen 

for 1000 ms. Then, each of the four images appeared in their location, in isolation, for 500 ms, 

followed by a 500 ms blank screen. After the presentation of all four images, the colored-circle 

image appeared again at the center of the screen for 1000 ms. Then, after another blank screen of 

1000 ms, the target image appeared at the center of a black circle (drawn in the same radius as 

the presentation sequence). The target was one of the four images from the trial’s sequence and 

its serial position was evenly and randomly assigned across trials. Once the participant clicked 

with the mouse on the circle, the response probe, a white circle, appeared at the clicked location 

on the circle’s perimeter. The participant adjusted the probe (using the mouse) and validated her 

response by pressing the spacebar key on the keyboard. Notably, there was no time limit and 

participants could not validate their response without moving the mouse first.  Afterward, the 

feedback display appeared for 1000 ms (Figure 3a). Importantly, 96 trials of Meaningful items 

were randomly intermixed with 96 trials of Meaningless items trials (with each trial consisting of 

same-type objects only). For practice, participants performed a few test trials to ensure they 
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understood the task. These trials were not recorded, and their images were not included in the 

experimental trials. 

Figure 3. Schematic illustration of the trial's sequence in Experiment 1 (a), 2 (b), and 3 

(c). Note: items and displays are not scaled to their real size, Experiment 3 used smaller 

images (see below). 

Experiment 2  

The design, procedure, and stimuli were the same as in Experiment 1 except for the following 

changes (see Figure 3b). Each item appeared for 350 ms, followed by a mask image of the same 

object size, that appeared immediately after each of the objects in their location, for 650 ms. This 

was done in order to replicate Experiment 1's results under more demanding encoding 

conditions.  

Experiment 

1 

Experiment 

2 

Experiment 

3 
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Experiment 3 

To rule out the possibility that the lack of an SD (precision) effect was due to ceiling 

performance, as well as to directly test whether semantic meaning allows more locations to be 

stored in VWM for meaningful items, the memory set size was enlarged to six items. Increasing 

the number of potential target locations necessitated the use of smaller items and a larger circle, 

thus stimuli size was reduced to 100 x 100 pix. Note that this adjustment also creates more space 

for an SD effect. The black circle, serving as a landmark, remained visible throughout the trial 

while the items appeared on its perimeter. Finally, to shorten the experiment, the initial fixation 

display and the final fixation display were presented for 500ms only. The colored circle at the 

end of the sequence was not presented (see Figure 3c). There was a total of 180 trials, 90 in each 

condition (i.e., Meaningful/Meaningless). In all other respects, the experiment was identical to 

Experiment 1.  

Mixture-Model Analysis 

On each trial, we calculated the error magnitude, that is, the difference between the adjusted 

probe location and the target location. The error magnitude ranged from ±180°. Modeling was 

performed with Memtoolbox (Suchow et al., 2013) and we used the Swap model (Bays et al., 

2009). This model received the lowest AIC and BIC scores (Corrected Alkalian’s Information 

Criteria, and Bayesian Information Criteria, respectively) against the Standard model (Zhang & 

Luck, 2008), and the Variable Precision model (Van den Berg et al., 2012). The Swap model 

consists of three parameters: (1) Standard Deviation (SD): The standard deviation of target 

responses, reflecting the precision of the target’s report in degrees, (2) Proportion of swap 

responses (B): the proportion of trials where participants mistakenly reported the location of one 

of the distractor items instead of the target item, (3) Proportion of guess responses (G): 
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proportion of trials with a large magnitude error originating from a uniform distribution, and 

unrelated to any of the distractors’ location. For each participant, each condition (i.e., 

meaningful, meaningless) was modeled separately. Each of the three parameters was aggregated 

across participants to create an overall model for each condition1. In general, the model computes 

the SD based on errors around 0 (target). This estimate of SD is then applied around the center of 

each distractor. This holds that participants had the same ‘target’ precision but only misreported 

the location of the item. Because the items were widely separated, low-precision reports (within 

the range of the estimated SD) would fall within the appropriate item. Unrelated location reports 

would fall between items, and most likely would be classified as "guesses". 

 

Results 

Results from all experiments are detailed in Figure 4. To quickly overview, as can be seen in 

Figure 4a, the model-free Mean Absolute Error (MAE) shows an effect of meaning across all 

experiments: a smaller overall magnitude of errors for meaningful than for meaningless items. As 

can be seen in Figure 4b, depicting the mixture-model parameters, only the Swap parameter was 

affected by meaning, as trials containing meaningful items had fewer swap errors.  

 

1 Recently, criticism was raised against some of the theoretical assumptions of mixture 

modeling approach (Williams et al., 2022; Brady et al., 2023; Schurgin et al., 2020). Yet, not 

all researchers are convinced by these claims (e.g., Tomić & Bays, 2022). Moreover, the 

methodological assumptions of the mixture-modeling are met in the present study; radial 

location is a linear variable (unlike color) and there is sufficient error space for the 

classification of both swaps and guesses (e.g., Bays, 2016).  Furthermore, an empirical model 

comparison of the data showed that the swap model (Bays et al., 2009) provided the best fit, 

even against the variable precision model (which holds other theoretical assumptions).  
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Figure 4. Results in the three experiments. (a) Overall spatial memory performance: The Mean 

Absolute Error (MAE) as a function of stimulus condition and experiment (b) Model parameters: 

In rows, the results for each experiment. In columns, parameter values: proportion of Swap-rate, 

proportion of Guess-rate, and the Standard Deviation in degrees (SD) as a function of stimulus  

condition. Black circles represent individual data. Error bars denote 1 SEM, ** denotes p <.01, 

*** denotes p <.001, NS denotes p >.05. 

 

Experiment 1  

Three participants were excluded from the analysis (2 for large MAE > 80 ̊, 1 

participant’s data did not converge). The removal of these data did not affect any of 

the conclusions. 
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First, to ensure that meaning influenced memory performance we compared the MAE  

magnitude between meaningful-items and meaningless-items trials. A two-sided paired samples 

t-test revealed a significant difference between the two conditions, t(31) = 4.18, p < .001, d = .73, 

and a substantial Bayes factor of BF10 = 125 was in accord with the stopping rule.  Next, we  

compared each of the three model’s parameters, between meaningful and meaningless trials. 

Only the swap error parameter (B) was significantly different between the conditions, t(31) = 4.4, 

p <.001, d = .79, BF10 =   274. We did not observe a significant difference in the SD parameter, 

t(31) = 1.1, p = .242, d = .21, BF01 =   2.77, or in the guess rate parameter, t(31) = 0.5, p = .613, d 

= .09, BF01 =   4.69.  

Experiment 2  

Two participants were excluded from the analysis (MAE > 80 ) and the removal of 

these data did not affect any of the conclusions. 

Overall performance was indeed worse in Experiment 2 than in Experiment 1 as 

seen in the MAE (independent samples, M = 52̊ vs 39̊, t(52) = 3.43, p = .001, d = 

.95). Importantly, once again, there was an effect of meaning on the MAE, t(21) = 

3.75, p = .001, d = .8, and the Bayes factor of BF10 = 31 was in accord with the 

stopping rule.  Comparing the model parameters, we observed the same results as in 

Experiment 1. The swap error parameter (B) was significantly different between the 

conditions, t(21) = 3.76, p = .001, d = .8, BF10 =   31. We did not observe a 

statistically significant difference in the SD parameter, t(21) = .7, p = .468, d = .15, 

BF01 =   3.5, nor in the guess rate parameter, t(21) = 0.4, p = .639, d = .1, BF01 =   

4.04. 21 
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Experiment 3 

Two participants were excluded from the analysis (1 participant’s data did not converge  

and 1 participant’s SD estimate was inflated (SD > 89 ̊)). The removal of these data did not affect 

any of the conclusions. 

Increasing memory set size had a large effect on the overall memory performance  

compared to Experiment 1, as evident in the MAE (nonparametric independent samples Welch, 

M = 59 ̊vs 39̊, t(48.6) = 6.2, p < .001, d = 1.6). Nevertheless, we observed the same pattern of 

results as in our previous experiments. The overall effect of meaning was significant, as evident 

in the MAE magnitude, t(22) = 3.09, p = .005, d = .64, and the Bayes factor of BF10 = 8.3 was in 

accord with the stoppage rule. Still, once again, the same pattern emerged: a significant 

difference for the swap error parameter, t(22) =3.14, p = .005, d = .655, BF10 =   9.2, but not for 

the SD parameter, t(22) = .18, p = .852, d = .03, BF01 = 4.4, nor the guess rate, t(22) = .79, p = 

.435, d = .16, BF01 = 3.4. 

Location memory precision 

Given the idea that spatial location has a special status, in this analysis, we focused on the  

potential difference (or lack of) between experiments in the precision of location memory. An  

across-experiment analysis with the SD parameter as the dependent variable (Repeated Measures 

ANOVA: Meaningful/Meaningless as a within-subject factor, and Experiment as a between- 

subjects factor), did not show statistically significant differences in the precision of spatial 

location by the item meaning, F(1,74) = .01, p = .917, nor by its interaction with the experiment,  

F(2,74) = .75, p = .473. Bayesian RMANOVA, with the same factors, corroborated that the 

precision parameter was unaffected by stimulus meaning (BF01 = 8.4), and did not interact with  
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experimental conditions (BF01 = 8.9), noting an overall high degree of precision (M 

= 13.7)̊. Thus, semantic meaning does not affect precision, which seems high to 

begin with.   

General Discussion  

The present study examined how items' conceptual meaning affects VWM performance.  

While traditional VWM research used simple stimuli to reduce LTM involvement, we 

manipulated the conceptual meaning of visually complex items, to directly examine LTM 

involvement in VWM. Specifically, we asked which aspect of memory is improved by 

conceptual meaning and whether meaning allows observers to better retain an arbitrary visual 

property of the stimuli, such as its spatial location.  In three experiments, we compared two types 

of stimuli: Meaningful real-world items, and scrambled, meaningless items. The scrambling 

procedure preserved most of the visual statistics of the stimuli while stripping them of their 

semantic meaning (Brady & Störmer, 2022; Chung et al., 2023a; Sahar et al., 2020; Shoval & 

Makovski, 2022; Shoval et el., 2023; Starr et al., 2020), thus, the two stimulus sets mainly 

differed in their conceptual distinctiveness (but see reservation below). Consequently, when 

observers were exposed to the scrambled, meaningless items, they could not readily access the 

items' conceptual information, instead primarily relying on their visual features.  

Experiment 1 revealed a large overall benefit in the location memory of meaningful items.  

When the memory performance was decomposed into parameters using a mixture-modeling  

analysis (Bays et al., 2009), we observed that the benefit was driven only by fewer swap errors,  

not by better precision or by a smaller guess rate. That is, the advantage of meaningful items  

resulted from the fact that observers were more frequently correct about the item’s location given  
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its known identity (i.e., the memory probe). The results also revealed a high precision in 

reporting the target’s location along with a low guess rate that might have concealed an effect in 

these parameters. Therefore, in Experiment 2, we shortened the encoding duration and masked 

each item. Despite an increase in the overall magnitude of errors, we observed again a large 

location memory benefit for meaningful items and the same pattern of results when decomposing 

the findings to the model parameters: Fewer swap errors for meaningful stimuli, along with no 

difference for both the SD and the guess-rate parameters. Experiment 3 used a larger set size, 6  

items instead of 4 items. Once again, although this time smaller in magnitude, we observed an  

advantage for meaningful items. Consistently, as in the previous experiments, fewer swap errors  

were found for meaningful stimuli, and no effect was observed for the SD and the guess-rate  

parameters. Collectively, we showed that the semantic meaning benefit was driven 

by fewer swap errors for meaningful stimuli, rather than by improved precision or 

fewer location guesses. 

Three main conclusions can be drawn from this study. First, overall memory performance, as 

measured by the model-free Mean Absolute Error magnitude (MAE), clearly showed that 

meaning improved memory performance, specifically for spatial memory of an arbitrary 

location. This result extends past findings demonstrating a role for conceptual meaning in VWM 

(Asp et al., 2021; Conci et al., 2021; Overcott & Souza, 2023; Sahar et al., 2020; Shoval & 

Makovski, 2022; Starr et al., 2020; Störmer & Brady, 2022). Furthermore, our findings 

demonstrate that memory not only enhances stimulus aspects related to core identity, but also to 

an arbitrary feature, such as location or color (Chung et al., 2023a). The findings that semantic 

meaning dramatically improves VWM performance may challenge the external validity of 

numerous findings from previous studies using 'simple' (meaningless) stimuli.  
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Second, a deeper examination of performance reveals that the main factor affected by semantic 

meaning is feature binding, as participants made fewer location-identity (or, location-shape) 

swap errors with meaningful than meaningless items. This finding suggests that the enhancement 

of retention capacity by semantic meaning might specifically relate to stimulus feature-bindings, 

as suggested by Oberauer (2019). Our results are analogous to the findings of Markov and 

Utochkin (2022), who used a similar location reproduction task and analysis. In contrast to the 

current study, these authors used only real-world items (i.e., meaningful stimuli), for which they 

varied the conceptual distinctiveness in the memory array. That is, they contrasted same-category 

item trials (e.g., all apples, characterized by a low distinctiveness) with different-category item 

trials (e.g., an apple, a mug, and a rabbit, characterized by a high distinctiveness).  

Most relevant to the current results, Markov and Utochkin (2022) consistently found that 

categorical similarity did not affect correct recognition rates of the item’s identity, and did not 

affect the overall precision or guess rate for spatial locations. Similarly to the present findings, 

more swap errors were observed under the low-distinctiveness (i.e., high similarity) than the 

high-distinctiveness (low similarity) condition. That is, observers frequently swapped the 

location of items within the same category, suggesting that conceptual similarity creates 

interference between items. Notably, however, items from the same conceptual category also 

shared a high degree of visual similarity, whereas, in the present study the meaningless items 

varied in their perceptual features (albeit the scrambling procedure may have somewhat reduced 

their visual distinctiveness, relative to the meaningful objects). Nevertheless, despite these 

differences, the conclusions of both studies converge on each other: observers tend to rely on 

conceptual meaning in reducing item-to-item interference when maintaining and retrieving 

stimuli's locations in VWM. Note that similar results were obtained when examining the effects 
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of conceptual meaning on memory for an arbitrary color, that is, an enhanced item-color binding 

for the meaningful objects (Chung et al., 2023a, 2023b). 

Lastly, the semantic meaning of the items did not affect the degree of location memory precision, 

which remained relatively high across all three experiments.  Though speculative, this high 

precision might reflect the special status of spatial location. A similar high precision was 

observed by Markov and Utochkin (2022), using a within- vs. between-category manipulation. 

Furthermore, recent findings demonstrated that the recall of stimulus location (on a continuous 

report scale) yielded the highest precision and accuracy rates, compared to orientation, color, and 

shape (Tomić & Bays, 2022). Thus, the inherently high accuracy and precision of spatial 

locations in this, as well as other studies, might have obscured a potential effect with the 

precision parameter. Alternatively, the absence of a semantic effect on spatial location memory 

may suggest that spatial location per-se ('where') is processed independently of semantic 

meaning ('what'), and therefore, the latter exerts little direct impact on it. However, such a 

segregated view may oversimplify matters, as findings have shown that semantics and real-world 

items improved the accuracy in spatial working memory change-detection tasks (Hu & Jacobs, 

2021).  

Despite clear behavioral evidence that conceptual meaning improved item-feature binding, the 

current study cannot provide a definitive underlying mechanism for this pattern of results. 

However, at least two explanatory models have nevertheless been suggested for the effects of 

conceptual meaning on memory.  First, Popov and Reder (2020) provided a computational model 

that showed that contextual memory effects in word lists (e.g., recency, primacy, etc.), can be 

explained by the frequency (i.e., familiarity) of the stimuli. Given a limited pool of resources, the 

authors suggested that high-frequency words were better remembered due to their consumption 
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of less attentional resources for encoding than low-frequency words. They concluded that the 

formation of a memory representation requires the use of resources proportionally to the item’s 

memory strength (i.e., reflecting as a robust and accessible representation). In the present study, 

one might consider meaningful items to be more 'strongly' encoded due to their inherent 

familiarity, relative to the novel, scrambled items. Put differently, meaningful items have a 

stronger memory signal since they are heavily associated with prior knowledge. Consequently, 

they require less resources for their encoding, sparing more resources for the encoding of 

additional information, such as their location (see also Reder, 2013, Bellana et al., 2021). This 

idea is closely related to the notion that activating an LTM representation in VWM consists of 

prototypical information (like a common label, shape, and surface features) that strongly defines 

the object. Such information can increase the dimensionality of the representation while reducing 

the information entropy (i.e., the cost of processing every bit of visual information). 

Interestingly, consistent with the findings of our study, Popov et al. (2022) showed that word 

familiarity (operationalized by high vs. low frequency) affected the probability of location swap 

errors, but not the precision memory of the target location. Again, the fact that feature-binding 

processes are long known to require attentional capacity (e.g., Treisman & Gelade, 1980) is 

highly consistent with the resource-based account (Popov & Reder, 2020; Popov et al., 2022).  

A different model, emerging from a signal detection perspective (“Target Confusability 

Competition”, TCC, Shurgin et al., 2020, see also Brady et al., 2024; Oberauer, 2023), suggests 

that swap errors occur due to a lower signal-to-noise ratio (i.e., lower d’). That is, visual 

similarity between items creates “confusability” between the target item and the foils. This is 

consistent with the current result as one may suggest that meaningful items have a stronger 

memory signal, on the account that they are more visually and a conceptually distinct. Although 



25 

 

the scrambling manipulation maintained most low-level features and image statistics, the fact 

that local as well as global contours were largely blurred turned the meaningless items into 

somewhat less visually distinct from each other. Whether on a visual or a conceptual level, both 

types of distinctiveness (i.e., degree of similarity) can contribute to such pattern of errors (but 

see, Tomić & Bays, 2022). Further research is needed to examine, for example, if similar 

(conceptually) meaningful items that strongly differ in visual properties indeed support a 

stronger memory signal. 

To conclude, our findings show that spatial location memory, as an arbitrary visual property, 

benefits from the item’s conceptual meaning.  This finding corroborates previous research, 

demonstrating how LTM involvement (long-term conceptual knowledge) enhances VWM 

performance (Asp et al., 2021; Chung et al., 2023a; Conci et al., 2021; Oberauer et al., 2017; 

Overcott & Souza, 2023; Sahar et al., 2020; Shoval & Makovski, 2022; Störmer & Brady, 2022). 

Critically, we show that meaning improves VWM for an item's location by specifically 

enhancing the binding between objects and their features similar to previous findings (Chung et 

al., 2023a; Markov & Utochkin, 2022; Oberauer, 2019), however, there was reliable evidence 

against the contribution of conceptual knowledge to VWM precision and/or the number of 

remembered locations. Nevertheless, meaningful semantics enhanced the capacity of information 

in VWM. Additional research is required to further uncover the nature of the interaction between 

LTM and VWM representations. 
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